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ABSTRACT

Pose estimation refers to tracking a human’s full body posture, including their
head, torso, arms, and legs. The problem is challenging in practical settings where
the number of body sensors are limited. Past work has shown promising results
using conditional diffusion models, where the pose prediction is conditioned on
both ⟨location, rotation⟩ measurements from the sensors. Unfortunately, nearly
all these approaches generalize poorly across users, primarly because location
measurements are highly influenced by the body size of the user. In this paper, we
formulate pose estimation as an inverse problem and design an algorithm capable
of zero-shot generalization. Our idea utilizes a pre-trained diffusion model and
conditions it on rotational measurements alone; the priors from this model are then
guided by a likelihood term, derived from the measured locations. Thus, given
any user, our proposed InPose method generatively estimates the highly likely
sequence of poses that best explains the sparse on-body measurements.

1 INTRODUCTION

Human pose estimation is a crucial piece to numerous applications, including medical rehabilitation,
virtual and augmented reality (AR/VR), sports coaching, health monitoring, performing arts, etc.
An ecosystem of pose-estimation tools already exists. In lab settings Stathopoulos et al. (2024), the
environment is instrumented with visual/infrared cameras to track user-pose so long as they are in
the camera’s field of view. In un-instrumented settings, such as in homes or offices, virtual reality
(VR) technologies are aiming to achieve full-body pose tracking using VR goggles and two handheld
controllers Han et al. (2020). The results have steadily improved Dittadi et al. (2021); Pavlakos et al.
(2019) with a recent boost from generative models (e.g., conditional diffusion models Castillo et al.
(2023)) that predicted the user’s full-body pose from just 3 sensors. Unfortunately, such proposed
generative techniques have an important limitation; they don’t generalize well across users with
varying body sizes. A generative model trained on data from a single user can’t be used by a user with
a different body size without fine-tuning. Authors in Aliakbarian et al. (2022) try to overcome this
issue by jointly training over both pose datasets and varying body shapes, but this increases model
complexity, and there is no guarantee that all possible body sizes were accounted for during training.
An algorithm that generalizes even to body shape outliers would be ideal.

In this paper, we propose InPose, a diffusion-based method that implicitly accounts for the user’s
body size without requiring any fine-tuning. Our core observation is that any human’s full-body pose
can be decomposed into a “scale-free pose” and a scale-dependent component. For human poses,
the scale-free pose can be imagined as a template human body whose skeletal joints (e.g., shoulders,
elbows, hip, knees, etc.) are rotated appropriately to create a given pose. The scale-dependent
component is the location of the joints in 3D space. Forward kinematics relates the scale-free
pose, along with the body size, to the scale-dependent component. Since the sensors give ⟨rotation,
location⟩ measurements from 3 body joints, it is possible to estimate a distribution of scale-free
poses from rotational measurements alone. Then, the location measurements can be used to sharpen
this distribution to poses that best explain the measurements. This decomposition lends itself to an
inverse problem formulation, shown visually in Fig. 1a. Using ⟨rotation, location⟩ measurements
from 3 body joints—head and two wrists—InPose aims to track the locations of all 22 body joints,
necessary to fully define the full 3D pose of a human.
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Figure 1: (a) InPose’s input and output visualized over 4 time frames. (b) “T” pose. (c) Pose with depiction
of rotation angle and root translation.

InPose’s inverse problem formulation can be sketched as follows. We train a Diffusion model
conditioned on rotational measurements from existing datasets; this gives us a conditional prior on
scale-free poses. When inferring a specific user’s pose, we use the user’s body size to scale up/down
the scale-free pose, and compare against location measurements to estimate a likelihood of the pose.
This likelihood term requires propagating a Gaussian random variable through a nonlinear operator.
We prove this propagation can be approximated as a Gaussian, and use the likelihood as an inverse
kinematics guidance term to guide the diffusion denoising process. The denoised result is a sequence
of full-body poses—samples from the posterior—that best explains the 3-point measurements for
that specific user. Through extensive experiments, we show promising generalization results on the
AMASS Mahmood et al. (2019) dataset across a wide range of body sizes and shapes.

2 MODEL AND MEASUREMENT

Body Model: Following the conventional SMPL framework Loper et al. (2015), we model the
human body as a graph (Fig. 1b). The vertices of this graph are the 22 main joints in the human
skeleton; the edges are the bones connecting these joints. The 3D coordinates of the joints (in a global
reference frame) are denoted as lj ∈ R3, j ∈ {1, ..22}. The bone that connects adjacent joints lj , lk
are denoted by a vector bj,k ∈ R3 of fixed length |bjk|. Every joint lj has a unique parent, lpj

. The
whole joint-tree has a root joint l1 located at the pelvis.

The global pose of a body is fully defined by the 22 joint locations in a global reference frame. Fig.1b
shows a “T” pose and Fig.1c shows a running pose. Intuitively, a global pose can be computed
in three steps. (1) Start with a standard “T” pose with the human located at the origin of a global
reference frame. (2) Move the root joint l1 to bring the human to it’s correct location; the human is
still in the “T” pose but the whole body is displaced. (3) Now, starting from joint l1, rotate each joint
based on the rotational measurements. Perform this sequentially down the joint tree ensuring a parent
joint pj has been rotated before rotating joint j. These 3 steps brings us to the human’s global pose.

Eq. 1 models the above steps to compute joint j’s global location at time frame i.

lj(i) = lpj
(i) +Rpj

(i) · bj,pj
(1)

Here Rpj (i) is a global 3D rotation matrix of the parent joint. Note that the global 3D rotation matrix
for any joint j is computed as Rj(i) = Rpj (i) ·Θj(i), where Θj(i) is the local 3D rotation matrix
shown in Fig.1c. Since Θj(i) is represented as 3D rotation matrices1, all the joint angles in the “T”
pose are identity matrices. As the human performs different poses, InPose aims to track the root
location l1(i) and global rotation Rj(i) for each of the joints.

Joint Angle Representation: While representing Rj(i) using 3D rotation matrices makes it easy
to compute joint locations, Zhou et al. (2019) has shown that representing them instead using the

1Other representations are possible, including axis-angle, Euler, or quaternion representation.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

6DoF parameterization rj(i) ∈ R6 is better for neural network training. This is due to the continuity
properties of this representation, which, unlike most other representations, do not require any form of
normalization2. The forward mapping for vector rj(i) is computed as:

rj(i) = [R
(1,1)
j (i) R

(2,1)
j (i) R

(3,1)
j (i) R

(1,2)
j (i) R

(2,2)
j (i) R

(3,2)
j (i)]⊤

where R
(k,l)
j (i) is the {k, l}th element of the corresponding 3D rotation matrix. There also exists

a non-linear differentiable inverse D̄ : R6 → R3×3 that maps the 6DoF representation to rotation
matrices (defined in Appendix A). Hence, Eq.1 becomes: lj(i) = lpj

(i) + D̄(rpj
(i)) · bj,pj

. We
extend D̄ to map all |M | rotations from 6DoF to rotation matrices, and term this function D.

Measurements: To align with recent work in this area Zheng et al. (2023a); Castillo et al. (2023), we
use the same AMASS dataset that contains locations and rotation angles of the head and two wrists.
These measurements are from VR goggles and handheld controllers, which use a combination of
ego-centric cameras, IMU sensors, visual SLAM algorithms, and dead reckoning methods to estimate
m locations and rotations in the global reference frame, where m ⊂M = {1, ...22} and |m| = 3.

3 INPOSE : INVERSE ZERO-SHOT POSE ESTIMATION

3.1 FORMULATION

We denote the noisy signal measurements from the 3 sensor joints as ym(i) = [lm(i), rm(i)]. Here i
indexes the measurement time-frames and is dropped throughout the rest of the paper unless specified.
lm(i) = l+m(i) + σlv(i) is the noisy location measurement, where l+m is the noise-free joint location,
and v(i) is iid Gaussian noise. Similarly, the rotation rm(i) is also noisy. Our goal is to predict rM ,
which are the 22 global joint rotations and l1, the root’s translation. We are also provided the user’s
bone lengths bj,pj

. With such sparse measurements, this is an ill-posed pose estimation problem.

Like Jiang et al. (2022), we simplify this problem by first assuming the root joint is stationary. We
estimate the scale-free pose defined by rM ; then scale to the correct pose defined by lM ; and then
drag this pose until the head’s location matches the measured head location, lhead. From this, we infer
the root translation l1. Thus, the core question boils down to sampling from the posterior p(rM |ym).

Diffusion models have recently found remarkable success for these types of posterior sampling
problems. They were originally proposed as a tool for sampling from a prior distribution p0(x

0).
This is done by first defining a noising process pt(xt) by injecting iid Gaussian noise of standard
deviation σt into it, where t ∈ {0 : T}. Diffusion models aim to reverse this noising process by
learning the score function∇xt

log pt(xt).

In our scenario, we require the conditional score∇rtM
log pt(r

t
M |ym). One method is to use Classifier-

Free Guidance (CFG) proposed by Ho & Salimans (2021). In this formulation, a conditional diffusion
model is trained to accept all the inputs ym = [lm, rm] for conditioning. Most previous work
Castillo et al. (2023); Van Wouwe et al. (2024) use this approach and are unable to support zero-shot
generalization. This is because the (noisy) location measurements lm vary based on body size—if
two people are in the same pose, their joints would share identical rotation angles, but because of
differences in bone lengths, we see from Eq. 1 that the joint locations lj will be different. Thus, a
conditional model trained on one user’s data does not generalize well to another. With a sequence of
poses through time, small prediction errors accumulate resulting in greater degradation.

To overcome this, we split the conditional score ∇rtM
log pt(r

t
M |ym) = ∇rtM

log pt(r
t
M |{lm, rm})

using Bayes’ rule:

∇rtM
log pt(r

t
M |{lm, rm}) = ∇rtM

log pt(r
t
M |rm) +∇rtM

log pt(lm|rtM , rm) + 0 (2)

= ∇rtM
log pt(r

t
M |rm) +∇rtM

log pt(lm|rtM ) (3)

where we have assumed lm and rm are conditionally independent.

The conditional score∇rtM
log pt(r

t
M |rm) is scale-free, and can be learned by a CFG-based condi-

tional diffusion model. The scale-dependent likelihood score∇rtM
log pt(lm|rtM ) can be utilized as a

2Rotation matrices and quaternions need to satisfy unitary conditions, affecting the quality of output poses
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guidance to the prior Chung et al. (2023); Kawar et al. (2022). This guidance is performed during
inference and does not require any training or fine-tuning of the generative neural network. We
use the Pseudoinverse-Guidance for Diffusion Models (ΠGDM) Song et al. (2023) framework, but
propose a mechanism to propagate a Gaussian random variable through the non-linear inverse D(.)
function inside the likelihood term (discussed soon). This mathematically enables the decomposition
of the user’s pose into a general scale-free pose (from the prior) and a user-specific scaling factor
(captured in the likelihood). Thus, our main contribution over past work—and the key to enabling
zero-shot pose-prediction—is to perform CFG using only the measured rotations, and use only the
joint locations as a pseudoinverse guidance to that CFG.

3.2 DESIGNING THE LIKELIHOOD, PRIOR, AND POSTERIOR TERMS

We now describe the various score terms used in our algorithm during every diffusion timestep.

CFG Prior: We train a CFG-based score model ϵθ(rtM , t, rm) to determine the conditional score
∇rtM

log pt(r
t
M |rm) as a function of the noisy rotation inputs rm from the 3-point sensors. This is

then used to derive a conditionally denoised estimate r̂tM using Tweedie’s formula Efron (2011):

r̂tM =
rtM −

√
1− ᾱtϵθ(r

t
M , t, rm)√

ᾱt
(4)

We adapt the same DiT Peebles & Xie (2022) transformer architecture used in BoDiffusion Castillo
et al. (2023) but modify it appropriately (details in Section 4) since we are only conditioning on
rotation rm, while BoDiffusion conditioned on both rm and lm.

Likelihood score: To compute the likelihood score∇rtM
log pt(lm|rtM ), we need to relate the joint

rotations to joint locations. Mathematically, we aim to minimize the likelihood ||lm −A ◦ D(r̂tM )||2
where A ◦ D(·) is the measurement operator. Recall, D(.) converts 22 joint rotations from the 6DoF
vectors to rotation matrices, and A is a linear function that uses these rotation matrices to determine
the joint location estimates. Eq. 1 had earlier shown the operation of A for a single joint, where
Rj(i) = D

(
rj(i)

)
.

Unfortunately, two issues stand in the way of estimating the likelihood. 1 Since rtM is a noisy
estimate of rM , we cannot pass it through the measurement operator to obtain l̂m. To mitigate this, we
adopt ideas from ΠGDM Song et al. (2023) to help approximate rtM as a Gaussian distribution. 2
Since D(.) is a non-linear function, propagating the approximated Gaussian random variable through
D(.) is problematic. We will prove that this propagation can be approximated with a Gaussian as
well, giving us a pathway to the final solution. Let us briefly review ΠGDM first and then visit the
second step in InPose.

ΠGDM Recap: Consider the general problem where we are given observations z = Ax0 + σzn,
where A is the measurement model, n is unit Gaussian noise, and σz is the noise variance. Say we
would like to estimate x0, for which we will guide a diffusion model that is denoising a noisy xt at
each diffusion time step. This guidance needs to use the likelihood score ∇xt log pt(z|xt), which
needs to be computed through an intermediate step of marginalization over x0 as follows:

pt(z|xt) =

∫
p(z|x0)pt(x

0|xt)dx0 (5)

If A is a linear function and the noise n is Gaussian, then p(z|x0) ∼ N (Ax0, σzI). For the second
term pt(x

0|xt), ΠGDM proposes to approximate this distribution as N (x̂t, w2
t I), where the mean

comes from a regular diffusion step. Hence, the distribution pt(z|xt) and the corresponding likelihood
score can both be approximated by a Gaussian as follows:

pt(z|xt) ≈ N (Ax̂t, w2
tAA⊤ + σzI) (6)

∇xt log pt(z|xt) ≈ ((z −Ax̂t)⊤(w2
tAA⊤ + σ2

z I)−1A
∂x̂t

∂xt
)⊤ (7)

Let us now return to InPose. We cannot directly apply ΠGDM to our likelihood score
∇rtM

log pt(lm|rtM ) since our measurement operator contains the D(.) function. But if D(.) is
ignored—meaning that the rotation matrix Rt

M is somehow available—then the measurement opera-

4
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Figure 2: InPose pipeline: 3-sensor rotation + location measurements are inputs. Rotations fed as conditions
to CFG which outputs conditional prior; location measurements estimate the likelihood, which steers denoising.

tor in Eq. 1 becomes linear. When l1 = 0, the joint location lj becomes a matrix-vector product, Cκ,
as follows:

[R1...Rpj
] · [b⊤2,1...b⊤j,pj

]⊤ = lj (8)

where C = [R1...Rpj ], and κ = [b⊤2,1...b
⊤
j,pj

]⊤. The matrix-vector product can be rearranged to
form (I3 ⊗ κ⊤) · vec(C) where ⊗ is the Kronecker product. We can thus obtain our linear function
A := I3 ⊗ κ⊤. Plugging this A into Eq 7 gives us the likelihood score.

Unfortunately, the D(.) function is non-linear in InPose, hence the conditional distribution pt(z|xt)
in Eq. 6 is no longer Gaussian. However, using the following Theorem, we show that it is possible to
approximate pt(lm|rtM ) as a Gaussian and compute its covariance matrix with a well-trained score
model ϵθ (proof in Appendix A).

Theorem 1. We are given a well-trained error model ϵθ, that learns the error distribution ϵt ←
ϵθ(r

t
M , t, rm), and denoises r̂tM ←

rtM−
√
1−ᾱtϵt√
ᾱt

. If the model ensures that ||r̂t,1:3j || = ||r̂t,3:6j || =
1, ⟨r̂t,1:3j , r̂t,3

:6
j ⟩ = 0, ∀j ∈M then pt(D(r0M )|rtM ) ≈ N (D(r̂tM ), w2

tΣr̂tM
) where Σr̂tM

is a positive
definite matrix.

From the proof of Theorem 1, we obtain the covariance matrix forD(r̂tM ) as C̃ov(D(r̂tM )) = w2
tΣr̂tM

.
Using this approximation, we get pt(D(r0M )|rtM ) ≈ N (D(r̂tM ), w2

tΣr̂tM
), and thus

∇rtM
log pt(lm|rtM ) = ((lm −A · D(r̂tM ))⊤(w2

tAΣr̂tM
A⊤ + σ2

l I)−1A∂D(r̂tM )

∂rtM
)⊤ (9)

3.3 ACCOUNTING FOR TRANSLATION: DIFFERENTIAL PARAMETERIZATION

From Eq. 1, we see that all joint locations at frame i have an additive dependence on l1(i) due to the
kinematic chain:

lj(i) =

j∑
k=3

(lpk
(i) +Rpk

(i) · bk,pk
) +R1(i) · b2,1 + l1(i) (10)

The mapping A derived from Eq. 8 is only valid if l1(i) = 0. To enable the linear inverse guidance
formulation when l1(i) ̸= 0, we use the difference between the positional measurements from each
of the 3 measured joints at every frame. Thus, the contribution of the root translation l1(i) for each of
the measured joint locations gets canceled.

3.4 MODEL PIPELINE

Figure 2 summarizes the InPose pipeline. Its objective can be summarized as performing Guided
diffusion to infer a sequence of human poses rM using a combination of conditioning inputs and
Pseudoinverse guidance using a modified ΠGDM likelihood score. The inputs to the algorithm are
the noisy joint rotations rj∈m and locations lj∈m of a subset of joints m of size 3.

At each diffusion step t, InPose’s workflow can be summarized in the following steps:

5
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• Use the CFG score function ∇rtM
log pt(r

t
M |rm) conditioned on noisy rotation inputs {rm} to

generate a conditionally denoised estimate r̂tM .
• Use ΠGDM to estimate the likelihood score∇rtM

log pt(lm|rtM ).

• Combine the conditionally denoised estimate and the likelihood score using modified DDIM
to generate the diffusion output for the next step rt−1

M . The proposed InPose algorithm is
described in Algorithm 1.

Algorithm 1 InPose Inference using modified ΠGDM

Require: N, ϵθ, η ∈ [0, 1],A,D(·)
Inputs: ym = [lm, rm], σl

Find a sequence of timesteps qi∈0..N with q0 = 0 and qN = T
Initialize rM ∼ N (0, I)
for i ∈ {N..1} do

t← qi, s← qi−1 ▷ Get start and end times
ᾱt ← 1

1+σ2
t

▷ Get α for VP-SDE

ϵt ← ϵθ(rM , t, rm)

r̂tM = rM−
√
1−ᾱtϵt√
ᾱt

▷ Denoised output at current iteration

c1 ← η
√

(1− ᾱt

ᾱs
) 1−ᾱs

1−ᾱt
▷ Constants for DDIM

c2 ←
√
1− ᾱs − c21

w2
tΣr̂tM

← C̃ov(r̂tM )

g ← ((lm −A · D(r̂tM ))⊤(w2
tAΣr̂tM

A⊤ + σ2
l I)−1A∂D(r̂tM )

∂rtM
)⊤ ▷ Likelihood score

Sample ϵ ∼ N (0, I)
rM ←

√
ᾱsr̂

t
M + c1ϵ+ c2ϵt +

√
ᾱtg ▷ Posterior update

end for
return rM ▷ Return Estimated Pose sequence

A pertinent question one may ask is as follows. Given that the user’s body size parameters are
available during inference, why not scale the default-body dataset with these body size parameters?
Said differently, applying Eq. 1, the scale-free joint rotations rM can be scaled—using the available
body size parameters—to regenerate locations lM . This new dataset can then be used to train a CFG
model, obviating the need for inverse solvers like InPose. Unfortunately, this is possible only
if l1 was known (or equal to 0). Otherwise, the mapping between rM to l1 is non-trivial. As an
illustration, consider that the user jumps. Without modeling the dynamics of the human body, it is
hard to determine the user’s displacement while they are airborne. This is why pure CFG models
are unable to generalize across body sizes, while InPose’s inverse guidance formulation does not
require new datasets from new users.

4 EXPERIMENTS

Datasets: All our experiments were performed on AMASS Mahmood et al. (2019), which is an aggre-
gate of multiple human-pose datasets and the de facto standard today for pose estimation/generation.
The data is in the SMPL body model format. Each dataset within AMASS consists of multiple
samples, each of which is a sequence of poses at 60, 100, or 120Hz; we resample all data to 60Hz.
A fixed default body shape typical of the average male is used for model training. Our experiments
follow two dataset protocols, as per our BoDiffusion baseline Castillo et al. (2023):

1. The Transitions Mahmood et al. (2019) and the HumanEVA Sigal et al. (2009) datasets within
AMASS were used for testing, while others were used for training.

2. An approximately 90%/10% split for training and testing respectively, on the CMU Carnegie
Mellon University, BMLrub Troje (2002), and the HDM05 Müller et al. (2007) datasets.

Baselines: We choose the two following SOTA algorithms as baselines. These models accept the
3-point joint locations lm(i), rotations rm(i), and the corresponding velocity and angular velocity

6
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as inputs; they output the full-body pose of the user for which each was trained. Both the velocity
and the angular velocity are computed as linear functions of lm and rm. The rotation and angular
velocities are represented in the 6DoF representation.

• AvatarJLM Zheng et al. (2023a) is a conventional neural network-based approach.
• BoDiffusion Castillo et al. (2023) is the CFG-based diffusion model that we adopt for InPose.

In the original BoDiffusion paper, it outputs the local joint angles ΘM (i). The authors provide a
pretrained model, which is denoted as BoDiffusion(Local) in all our results.

• BoDiffusion(Global): We modified BoDiffusion(Local) to output global joint angles rM . This is
also evaluated using both lm and rm for CFG and is termed BoDiffusion(Global).

Implementation Details: We fine-tune the neural network used in BoDiffusion, and perform
inference using N = 50 steps. The original BoDiffusion algorithm implements a DiT Peebles & Xie
(2022) based denoiser in a CFG diffusion framework. Additional details are provided in Appendix B.

Evaluation Metrics: We use 4 standard metrics from literature to evaluate the models:

• Mean Per Joint Position (location) Error(MPJPE) measures the mean joint location error, in
cm, across all joints and poses in the sequence.

• Mean Per Joint Rotation Error(MPJRE) measures the mean joint rotation error, in degrees,
again across all joints and poses. MPJPE captures the scale-dependent error, while MPJRE
captures the scale-free error.

• UPE, LPE: We also report the joint position error, in cm, for the upper and lower body separately,
respectively. These two tell us how well the model is able to infer the upper body versus leg
movement, given that measurement sensors are all placed at the upper body.

4.1 RESULTS

Zero-shot generalization across body sizes: Fig. 3(a,b) presents results when the models are trained
on a default body size, and then tested for various body sizes (including the default). The body
sizes are varied by changing the scaling factor on the X axis (a value greater than 1.0 on the X
axis indicates a proportionally taller human, and vice versa). Note, all bones of the taller person
(or shorter) human has been scaled up (or down) by the same factor (we will report separate results
where different parts of the body are scaled differently). The root joint translation is also proportional
to this scaling factor. The results are performed using Protocol 1. We report location and rotation
errors (MPJPE and MPJRE). Importantly, we divide the estimated MPJPE by the scaling factor; The
MPJRE is obviously scale-free.

As expected, the baselines are able to outperform InPose in the default case when scale equals
1.0. This is because they are trained for this default shape. However, both the scaled MPJPE and the
MPJRE (Fig. 3a and 3b) remain almost flat for InPose regardless of body size. This demonstrates
the zero-shot nature of our inverse solver in contrast to the significant degradation of the baselines.

Figure 3: (a) Position error vs. body scale. (b) Rotation error vs. body scale. (c) Position error vs. location
noise. All these tests were performed using Protocol 1

Robustness to measurement noise: InPose is designed to be implicitly robust to location mea-
surement noise as well. We inject zero-mean i.i.d. Gaussian noise into the input location streams and
compute the estimation errors, while maintaining the default body shape and the rotation measure-
ments. This is an important test for practical applications since real-world wearable sensors—like
watches and phones—have difficulty with measurement errors. Fig. 3c shows the location error
under increasing Gaussian noise variance (the rotation error is reported in the Appendix). Evidently,
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InPose stays flat while other baselines degrade with noise. This is expected because while BoDif-
fusion’s model is sensitive to location noise, InPose uses the location only for inverse guidance,
allowing the prior to play an important role in the final pose estimates. In our experiments, we
also found that the velocity error in noisy conditions is lower in the case of InPose compared to
BoDiffusion. The output pose sequences from the baselines have high jitter, indicating the estimated
poses are out of distribution.

Figure 4: Qualitative results with scaling body
size. The same pose is used for all scales.

Qualitative results with scaling: Fig.4 presents
qualitative comparisons between InPose and
BoDiffusion(Global), for the default body size
and two scaling factors of 0.6 and 1.4. BoDif-
fusion performs better for the default size, es-
pecially in the lower body, but degrades at the
task of generalization. The errors are especially
prominent in the 0.6 case, where BoDiffusion
predicts the lower body to be in a squatted pose
because the measurements are generated by a
user of short stature. Since the priors were learnt
by BoDiffusion on data generated by a user of
the default body shape, there is no way of in-
forming the model of this difference. For the 1.4
case too, BoDiffusion incurs higher torso error.

Varying relative sizes of body parts: Table
1 reports results when the body parts are not
scaled up or down uniformly; instead, limbs and
torso are scaled with different scaling factors.
This models even the outliers in human varia-
tions, e.g., basketball players with longer arms, or athletes with longer legs. To create the ground
truth data, we scale bone lengths first, which are then used to recompute the joint locations lM from
the scale-free joint rotations rM . Unfortunately, the root translation l1 is a non-trivial function of rM
and the body shape. But in general, we observe that l1 is similar across body shapes that share the
same lower body bone lengths. Thus, we preserve both l1 and the lower body shape, and only vary
the upper body shape for these tests.

(a) Results with Upper Body shape variation (Protocol 1) (↓ is better)

Algorithm Default shape Upper body ×1.4 Arms ×1.4, Torso ×0.7
MPJPE MPJRE UPE LPE MPJPE MPJRE UPE LPE MPJPE MPJRE UPE LPE

AvatarJLM 4.92 4.25 2.13 9.94 26.09 7.02 25.46 27.47 18.89 9.33 14.76 25.95
BoDiffusion(Local) 5.16 4.32 2.36 9.72 25.69 15.35 22.79 30.21 9.98 9.24 8.05 13.33
BoDiffusion(Global) 5.97 4.97 2.35 11.96 13.40 11.48 10.91 17.93 7.61 7.24 5.15 11.98
InPose 7.64 6.38 3.36 14.74 9.15 6.71 4.80 16.31 7.45 6.52 3.23 14.6

(b) Results with Upper Body shape variation (Protocol 2) (↓ is better)

Algorithm Default shape Upper body ×1.4 Arms ×1.4, Torso ×0.7
MPJPE MPJRE UPE LPE MPJPE MPJRE UPE LPE MPJPE MPJRE UPE LPE

AvatarJLM 3.54 3.11 1.49 6.92 27.13 8.36 26.02 29.21 20.32 9.34 15.83 27.98
BoDiffusion(Local) 3.59 2.68 1.51 7.0 26.12 14.51 21.34 33.62 10.13 8.41 8.13 13.63
BoDiffusion(Global) 4.90 3.45 1.90 9.79 17.39 12.71 13.59 23.77 9.99 8.78 7.25 14.85
InPose 7.53 4.73 2.9 15.04 8.94 4.73 3.97 16.85 6.96 4.77 2.60 14.17

Table 1: Results across 4 metrics for non-uniform scaling of body sizes.

Evident from Table 1 (and more results in Table 2 in the Appendix), the results are aligned with
previous graphs. With the default body shape, the baselines outperform InPose on all 4 metrics.
This is because the respective neural networks are able to learn a complex non-linear mapping from
both the joint rotation rm and the location inputs lm to the user’s pose since the training body shape
and the inference body shape are identical. In contrast, InPose uses linear constraints using lm to
steer the output towards an estimate of the pose sequence that best explains the input.

However, when the bone lengths change, the baselines are misguided by the input locations and,
therefore, do not generalize. InPose outperforms both baselines in the MPJRE, MPJPE, and UPE
metrics since inverse location guidance accounts for the change in body shape. Unfortunately, the
LPE error remains higher for InPose in some cases.
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Figure 5: 6DoF vs. rotation matrix.

Ablation: 6DoF versus rotation matrices: Recall that
InPose needed to tackle the non-linearity from the D(.) func-
tion, which was needed to convert 6DoF representation to ma-
trices. A natural question is: was it necessary to use 6DoF at
all? Figure 5 shows the importance of 6DoF over 3× 3 rotation
matrices. We train two unconditional UNET-based diffusion
models—one using the 6DoF representation and the other using
rotation matrices. These models generate 64-frame human pose
samples as global joint angles in their respective representation.
These joint angles are then used to generate sequences of body meshes. The raw rotation matrix sam-
ple meshes(labeled RoT-Raw) from the Rotation matrix UNET have high jitter. In contrast, the 6DoF
meshes(labeled 6DoF) from the 6DoF UNET have much lower jitter. This is primarily because the raw
output rotation matrices are not unitary. In fact, by postprocessing the rotation matrices using D(.) on
the first 2 columns(labeled RoT-Post), we considerably lower the jitter. More results and animations
are available here: https://iclrinpose-crypto.github.io/ICLRInPose/

5 RELATED WORK

Deep-learning based methods for pose-tracking: Deep learning has found much success in
determining pose from a sparse set of measurements. Aliakbarian et al. (2023); Du et al. (2023);
Zheng et al. (2023b); Yuan et al. (2023) all use HMD-based location and rotation sensors to estimate
pose and translation. Nearly all these works focus on using sensor information from the head and
the two wrists. Jiang et al. (2022) estimates pose by first using a Transformer encoder to estimate
local joint angles, and then estimates translation by fitting the generated head translation to the head
location sensor input. Castillo et al. (2023) uses a CFG diffusion-based approach to estimate pose.
Most of the above-mentioned approaches are specifically trained for a single user’s body parameters,
which comes at the cost of worse generalizability. One work that does generalize across users,
Aliakbarian et al. (2022) jointly trains sensor inputs and bone length parameters in a flow-based
generative model framework. But this algorithm requires jointly training pose and a large number of
body shapes in order to generalize. In contrast, our work can directly accept any set of body bone
parameters without requiring any bone shape generalization training.
A large number of works Huang et al. (2018); Mollyn et al. (2023) focus on pose and translation
prediction using a sparse set of IMUs that provide acceleration and orientation data from the joints to
which they are attached. Yi et al. (2021) uses a cascaded sequence of Neural networks to predict pose
from 6 IMU sensors. Yi et al. (2022) incorporate physics-based dynamics constraints on the user’s
joint motion to improve pose estimation accuracy.

Human Motion synthesis: A closely related topic to pose estimation is pose synthesis Raab et al.
(2023); Tevet et al. (2025). This usually involves training a generative model on a human motion
dataset along with textual labels to generate motion based on a prompt or unconditionally. Shafir
et al. (2024) uses a trained motion synthesis model to serve as a prior for more complex tasks such as
motion blending and multi-person interactive motion.
Some of these textual models also accept other inputs to serve as guidance for the generated motion
Tessler et al. (2024); Diller & Dai (2024). Xie et al. (2024) generate human motion from textual
prompts using a diffusion model, but can also use a gradient-based inverse guidance method to
specify motion trajectories of various joints. Their work is closely related to ours, but they require
(N = 1000) steps of inverse guidance (using DDPM) during inference, as well as a Transformer-
based realism guidance module that encodes the joint location control signals.

6 CONCLUSIONS

We propose InPose, a diffusion-based model that estimates the user’s 3D fully-body pose sequence
from 3 sensor measurements. By decomposing poses into a scale-free and a scaling factor, we find a
pathway to an inverse problem formulation, which in turn enables the zero-shot generalization. As a
result, any new body size or shape need not be re-trained with personalized data; InPose is able to
guide the diffusion-based prior by computing whether the samples from the prior are consistent with
user’s measurements. There is room for improvement at least in two fronts, namely in outperforming
the baselines for the default sizes for which they are trained, and in improving lower body errors by
better modeling the physics of leg movements. We believe these are rich problems for future research.
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7 REPRODUCIBILITY STATEMENT

For reproducibility of our results: All AMASS data is available at https://amass.is.tue.
mpg.de/, as long as the license agreements for each dataset are followed. The analysis code-
base is available on our repository, linked from our website https://iclrinpose-crypto.
github.io/ICLRInPose/ with the dependencies documented in the repository as well. The
implementation details and hardware requirements are provided in the Supplementary material B.
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A PROOF OF THEOREM 1

Theorem 1. We are given a well-trained error model ϵθ, that learns the error distribution ϵt ←
ϵθ(r

t
M , t, rm), and denoises r̂tM ←

rtM−
√
1−ᾱtϵt√
ᾱt

. If the model ensures that ||r̂t,1:3j || = ||r̂t,3:6j || =
1, ⟨r̂t,1:3j , r̂t,3

:6
j ⟩ = 0, ∀j ∈M then pt(D(r0M )|rtM ) ≈ N (D(r̂tM ), w2

tΣr̂tM
) where Σr̂tM

is a positive
definite matrix.

Proof. (Sketch)We will prove the validity of the Gaussian approximation for a single joint rotation
rtj . This result can then be naturally extended to rtM because each joint rotation is independent in the
global reference frame. From ΠGDM, we approximate pt(rTM |rtM ) ≈ N (r̂tM , w2

t I). This implies that
every element r0,kj , ∀k ∈ {1 : 6}, ∀j ∈M ∼ N (r̂t,kj , wt) are i.i.d. Gaussian Random variables.

The mapping D̄(r0j ) = R0
j is defined as:

c1 =
[
r1:3j (t)

]⊤
, c̄1 =

c1

||c1||

c2 =
[
r4:6j (t)

]⊤
− projc̄1

( [
r4:6j (t)

]⊤ )
, c̄2 =

c2

||c2||
c̄3 = c̄1 × c̄2

Rj(t) =
[
c̄1 c̄2 c̄3

]
(11)

By the definition of D̄(r0j ) = R0
j , the unit norm constraints ||r̂t,1:3j || = ||r̂t,3:6j || = 1, and

⟨r̂t,1:3j , r̂t,3
:6

j ⟩ = 0, the elements of the first two columns, R
0,(1:2,1:3)
j ∼ N (R̂

t,(l,m)
j , w2

t ) are
also Gaussian random variables that are uncorrelated. Now, the elements of the third column
of each R

0,(3,1:3)
j are the result of the cross-product r0,1:3j × r0,3

:6
j . Let’s first discuss R

0,(3,2)
j =

(r0,3j r0,4j − r0,1j r0,6j ). The mean of this random variable is:

E[r0,3j r0,4j − r0,1j r0,6j ] = E[r0,3j r0,4j ]− E[r0,1j r0,6j ] (12)

= E[r0,3j ]E[r0,4j ]− E[r0,1j ]E[r0,6j ] (13)

= r̂t,3j r̂t,4j − r̂t,1j r̂t,6j (14)

Thus, all the elements of the third column R
0,(3,1:3)
j have their mean given by the respective cross-

product terms. Next, we can compute the variance as:

Var[r0,3j r0,4j − r0,1j r0,6j ] = E[(r0,3j r0,4j − r0,1j r0,6j )2]− E[r0,3j r0,4j − r0,1j r0,6j ]2 (15)

Treating the terms separately, we get

E[(r0,3j r0,4j − r0,1j r0,6j )2]

= E[(r0,3j r0,4j )2] + E[(r0,1j r0,6j )2]− 2E[(r0,3j r0,4j r0,1j r0,6j )] (16)

= E[(r0,3j )2]E[(r0,4j )2] + E[(r0,1j )2]E[(r0,6j )2]− 2E[(r0,3j r0,4j r0,1j r0,6j )] (17)

= (w2
t + (r̂t,3j )2)(w2

t + (r̂t,4j )2) + (w2
t + (r̂t,1j )2)(w2

t + (r̂t,6j )2)− 2r̂t,3j r̂t,4j r̂t,1j r̂t,6j (18)

= 2w4
t + w2

t ((r̂
t,3
j )2 + (r̂t,4j )2) + (r̂t,1j )2) + (r̂t,6j )2)) + (r̂t,3j r̂t,4j )2 + (r̂t,1j r̂t,6j )2 − 2r̂t,3j r̂t,4j r̂t,1j r̂t,6j

(19)

using the independence property and the definition of variance. Next,
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E[r0,3j r0,4j − r0,1j r0,6j ]2 = E[r0,3j r0,4j ]2 + E[r0,1j r0,6j ]2 − 2E[(r0,3j r0,4j r0,1j r0,6j )] (20)

= (r̂t,3j r̂t,4j )2 + (r̂t,1j r̂t,6j )2 − 2r̂t,3j r̂t,4j r̂t,1j r̂t,6j (21)

Substituting the above terms into Eqn. 15, we get

Var[r0,3j r0,4j − r0,1j r0,6j ] = w2
t (2w

2
t + ((r̂t,3j )2 + (r̂t,4j )2) + (r̂t,1j )2) + (r̂t,6j )2)) (22)

Finally, we compute each of the covariances of the third column elements R0,(3,1:3)
j . To compute

Cov[R0,(3,2)
j , r0,1j ]:

Cov[r0,3j r0,4j − r0,1j r0,6j , r0,1j ]

= Cov[r0,3j r0,4j , r0,1j ]− Cov[(r0,1j )2r0,6j ] (23)

= E[r0,3j r0,4j r0,1j ]− E[r0,3j r0,4j ]E[r0,1j ]− E[(r0,1j )2r0,6j ] + E[r0,1j r0,6j ]E[r0,1j ] (24)

= 0− (w2
t + (r̂t,1j )2)r̂t,6j + (r̂t,1j )2r̂t,6j (25)

= −w2
t r̂

t,6
j (26)

and Cov[R0,(3,1)
j , R

0,(3,2)
j ]:

Cov[r0,2j r0,6j − r0,3j r0,5j , r0,3j r0,4j − r0,1j r0,6j ]

= 0− Cov[r0,3j r0,5j , r0,3j r0,4j ] + 0− Cov[r0,2j r0,6j , r0,1j r0,6j ] (27)

= E[r0,3j r0,5j ]E[r0,3j r0,4j ]− E[(r0,3j )2r0,5j r0,4j ] + E[r0,2j r0,6j ]E[r0,1j r0,6j ]− E[(r0,6j )2r0,1j r0,2j ]

(28)

= 0− w2
t r̂

t,4
j r̂t,5j + 0− w2

t r̂
t,1
j r̂t,2j (29)

= −w2
t (r̂

t,4
j r̂t,5j + r̂t,1j r̂t,2j ) (30)

The list of variances is the following:

Var[R0,(3,1)
j ] = w2

t (2w
2
t + (r̂t,2j )2 + (r̂t,6j )2 + (r̂t,5j )2 + (r̂t,3j )2)

Var[R0,(3,2)
j ] = w2

t (2w
2
t + (r̂t,3j )2 + (r̂t,4j )2 + (r̂t,1j )2 + (r̂t,6j )2)

Var[R0,(3,3)
j ] = w2

t (2w
2
t + (r̂t,1j )2 + (r̂t,5j )2 + (r̂t,4j )2 + (r̂t,2j )2)

and the covariances are:

Cov[R0,(3,1)
j , r0,2j ] = w2

t r̂
t,6
j Cov[R0,(3,2)

j , r0,1j ] = −w2
t r̂

t,6
j Cov[R0,(3,3)

j , r0,1j ] = w2
t r̂

t,5
j

Cov[R0,(3,1)
j , r0,3j ] = −w2

t r̂
t,5
j Cov[R0,(3,2)

j , r0,3j ] = w2
t r̂

t,4
j Cov[R0,(3,3)

j , r0,2j ] = −w2
t r̂

t,4
j

Cov[R0,(3,1)
j , r0,5j ] = −w2

t r̂
t,3
j Cov[R0,(3,2)

j , r0,4j ] = w2
t r̂

t,3
j Cov[R0,(3,3)

j , r0,4j ] = −w2
t r̂

t,2
j

Cov[R0,(3,1)
j , r0,6j ] = w2

t r̂
t,2
j Cov[R0,(3,2)

j , r0,6j ] = −w2
t r̂

t,1
j Cov[R0,(3,3)

j , r0,5j ] = w2
t r̂

t,1
j

Cov[R0,(3,1)
j , R

0,(3,2)
j ] = −w2

t (r̂
t,1
j r̂t,2j + r̂t,4j r̂t,5j )

Cov[R0,(3,2)
j , R

0,(3,3)
j ] = −w2

t (r̂
t,2
j r̂t,3j + r̂t,5j r̂t,6j )

Cov[R0,(3,3)
j , R

0,(3,1)
j ] = −w2

t (r̂
t,1
j r̂t,3j + r̂t,4j r̂t,6j )
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while the terms that have been omitted are all 0.

Now that we have the respective variances and covariances, we can build the positive definite
covariance matrix for pt(D̄(r0j ) = vec(R0

j )|rtj), which at diffusion step t is w2
tΣr̂tj

. To show that Σr̂tj

is a positive definite matrix, we use Sylvesters criterion Gilbert (1991). It states that a symmetric
matrix Σ ∈ RN×N is positive definite if each upper left corner matrix of sizes n ∈ {1, . . . , N} has a
positive determinant. Since Σr̂tj

is a relatively large matrix of size 9× 9, we use SymPy Meurer et al.
(2017) to compute each corner matrix determinant.

We find that each determinant equals a positive number that depends on w2
t . The first 6 corner matrices

trivially have determinant 1 since they are all identity matrices. The determinant for n = {7, 8, 9}
(termed Σn×n

r̂tj
) are the following:

det(Σ7×7
r̂tj

) = 2w2
t det(Σ8×8

r̂tj
) = (2w2

t )
2 det(Σr̂tj

) = (2w2
t )

3

thus proving that Σr̂tj
is positive definite.

Since we assume every rotation in rtM is independent of each other, when we combine the w2
tΣr̂tj

for each rotation, we get a large positive definite matrix w2
tΣr̂tM

. Thus, we can approximate the
distribution pt(D(r0M )|rtM ) as a Gaussian using the mean and the derived positive definite matrix.

B IMPLEMENTATION DETAILS

As stated earlier, we use BoDiffusion as the base Diffusion model for InPose. The conditional
inputs for CFG are the joint rotations, locations, the joint velocities, and the angular velocities from
the 3 measured joints. The rotations are provided using the 6DoF representation. The output of the
network is the 22 joint rotations ΘM in the local reference frame, expressed in 6DoF. The model is
designed to output a frame of 41 samples. For sequences larger than 41 samples, it uses an overlap of
20 samples between successive frames.

Since we require the model to output joint angles rM in the global frame, we fine-tune the model
using our training datasets to output global rotation angles. We use the weights provided by the
BoDiffusion authors to initialise fine-tuning. We also tune the model to use only joint rotations
and angular velocities for CFG by training the model on a subset of samples with zeroed out joint
locations and velocities. During inverse-guidance-based inference, we can similarly zero out the
location and velocity CFG inputs to the diffusion network.

This model has about 22M parameters. Finetuning is done using the DDPM framework for N = 1000
steps. Inference is done for N = 50 steps using DDIM, for both pure CFG-based guidance as well as
InPose’s inverse guidance. We used an Nvidia RTX Titan GPU for training for 2 days with a batch
size of 256.

Inverse Guidance: For the ΠGDM-based inverse guidance term ∇rt log pt(lm|rtM ), we used an
additional scale parameter, which we found was useful in improving performance for all metrics.
Increasing this term led to minor increases in MPJPE performance at the cost of worse MPJRE error.
Secondly, since the positive definite matrix Σr̂tM

is very large, its usage substantially slows down
run-time when its inverse is computed. We found that setting Σr̂tM

to simply the identity matrix
doesn’t degrade performance with the benefit of faster run-time.

C MORE RESULTS

Performance with varying upper body(Part2): We show more results with varying upper body
shape in Table 2. We once again see that InPose is able to generalize better to changes in relative
bone lengths, but lags behind the other baselines in lower body pose estimation.

Performance with scaling body size on Protocol 2: Figures 6a and 6b are the performance results
from scaling body size using Protocol 2. The tests were conducted in a manner similar to what is
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(a) Results with Upper Body shape variation (Protocol 1) (↓ is better)

Algorithm Upper body ×0.7 Arms ×1.4 Arms ×0.7
MPJPE MPJRE UPE LPE MPJPE MPJRE UPE LPE MPJPE MPJRE UPE LPE

AvatarJLM 20.59 10.33 19.02 23.32 9.21 7.21 7.79 11.84 7.90 8.15 5.88 11.46
BoDiffusion(Local) 9.00 11.29 6.68 13.2 15.57 11.99 13.32 19.29 9.36 8.84 7.12 13.27
BoDiffusion(Global) 7.44 10.56 4.35 12.81 9.51 9.02 7.18 13.66 7.83 8.96 4.89 12.88
InPose 6.67 6.17 2.42 13.80 8.25 6.67 3.97 15.4 7.22 6.20 2.92 14.35

(b) Results with Upper Body shape variation (Protocol 2) (↓ is better)

Algorithm Upper body ×0.7 Arms ×1.4 Arms ×0.7
MPJPE MPJRE UPE LPE MPJPE MPJRE UPE LPE MPJPE MPJRE UPE LPE

AvatarJLM 21.63 9.06 19.86 24.56 10.30 8.02 8.57 13.36 7.44 6.67 6.17 9.65
BoDiffusion(Local) 7.72 9.14 6.06 10.67 15.93 11.11 12.77 21.11 7.61 6.95 6.30 9.91
BoDiffusion(Global) 9.17 9.32 6.72 13.38 13.19 10.76 9.83 18.94 9.19 7.17 7.13 12.63
InPose 6.53 4.75 2.11 13.84 7.80 4.74 3.21 15.24 7.34 4.78 2.65 14.97

Table 2: Algorithm comparison for varying upper body shape. The metrics used are Mean Joint
Position Error(MPJPE) in cm, Mean Joint Rotation Error(MPJRE) in degrees, Upper Joint Position
Error(UPE) in cm, and Lower Joint Position Error(LPE) in cm. The lower body shape was kept the

same, while the upper body bone lengths were scaled.

(a) MPJPE divided by Scale, vs body scale (b) MPJRE vs body scale

Figure 6: Performance with body-size scaling using Protocol 2.

described in Section 4.1. We once again see that InPose performs worse than the baselines in the
base case, where the same body shape that was used during training is used for testing. However,
when the body size is scaled, InPose outperforms the baselines. MPJRE, which measures the
scale-free performance, remains the same, while the scale-dependent MPJPE varies proportionally to
the scale.

Robustness to measurement noise(cntd): Here are the rotation error results from the robustness
study we performed in the Section 4.1. As stated earlier, we injected zero-mean i.i.d. Gaussian noise
into the input location streams and computed the estimation errors, while maintaining the default
body shape. Fig. 7 shows the rotation error(MPJRE) under increasing Gaussian noise variance in the
location measurements. As with the location error, InPose stays flat while other baselines degrade
with noise. Since the ΠGDM inverse guidance objective is formulated to be robust to noise, the prior
is able to synthesize poses that are realistic while also obeying the guidance provided by the location
inputs.

Errors in joint length estimates: Another study involves illustrating InPose’s sensitivity to errors
in the joint length estimates, where we show how the MPJPE and MPJRE worsen when there is an
error in our knowledge of the user’s bone lengths. We add white Gaussian noise to the true bone
lengths while constructing our measurement matrix A. The body shape parameters are set to the
defaults, and the measurements ym are unaltered.

Figure 8 shows the results for this experiment. We see that InPose is quite sensitive to bone length
estimation error. The algorithm can tolerate low errors within 1 cm, but begins to diverge any higher
than that. Making the algorithm robust to bone length estimation errors will be looked at for future
work.
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Figure 7: Rotation error vs location
noise.

Figure 8: Performance with joint length
error. The left axis is the MPJPE, and

the right axis is the MPJRE.

(a) Position error vs rotation noise (b) Rotation error vs rotation noise

Figure 9: Performance with additive white noise in rotation measurements.

Robustness to rotation noise: We conduct another robustness study with rotation measurements,
similar to the location error study described in Section 4.1. Here, we add Gaussian noise to the
rotation measurements while keeping the location measurements noise-free. We then compare the
InPose with the two diffusion-based baselines. The results are summarized in Figure 9. We find
that all the diffusion-based algorithms are relatively robust to rotation measurement noise, with both
the rotation and position errors rising steadily as rotation noise increases.

Need for using location measurements: An important question is whether purely using the scale-
free rotations rm is better than including the scale-dependent location measurements lm. Since rm
is scale-free, we could potentially use only rm to estimate pose. As an ablation study, we compare
BoDiffusion(Global) and InPose, against BoDiffusion(Global) without using lm for CFG. Since
BoDiffusion(Global) was trained to accept only rm or both {rm, lm} for CFG-based conditioning,
this serves as an apples-to-apples comparison.

Table 3 shows the results of this comparison using Protocol 1, using the default body shape to
generate lm. As expected, BoDiffusion(Global) with lm for CFG performs the best amongst the
three algorithms. InPose is next, performing much better than BoDiffusion(Global) without lm,
illustrating the importance of lm for pose estimation.

Metric InPose BoDiffusion(Global) BoDiffusion(Global) no lm

MPJPE(cm) 7.64 5.97 15.98

MPJRE(◦) 6.38 4.97 8.71

Table 3: Comparison between InPose, BoDiffusion(Global) DPS and BoDiffusion(Global) with no
lm as input for CFG using Protocol 1

Using Inverse-Guidance on Local Joint Angle Representation: Considering that the BoDiffu-
sion(Local) model outperforms the BoDiffusion(Global) model, an important question is why not use

18
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Figure 10: More qualitative results comparing InPose with the Baselines with varying body scale.
Relative body shape and pose have been kept constant.

the local joint angle output ΘM for inverse guidance. Firstly, the linear systemA requires global joint
angles RM , hence we would have to transform the local joint angles ΘM using the recursive equation
described in Section 2. Because this equation is recursive, the transformation from ΘM → RM is a
higher-order polynomial function. We could use DPS Chung et al. (2023) as it allows for inverse
guidance through differentiable nonlinear measurement functions. However, in our experiments,
we found that this does not work well in practice, with the relatively low number of diffusion steps
that we use (N = 50) during inference. When we ran BoDiffusion(Local) with no joint position lm
conditioning, we saw no performance improvement when a DPS-based location inverse guidance
term was added.

More Qualitative Results: We show another qualitative sample in Figure 10, comparing InPose
with the baseline algorithms in a running pose. Once again, we keep the same relative body shape
and modify the scale only. InPose falls behind the baselines when it comes to estimating lower
body pose, especially the feet. However, it is able to generalize across all body scales tested, with the
error at the arms being lower compared to the baseline algorithms.

D LIMITATIONS AND FUTURE WORK

The biggest limitation of InPose is that the root translation isn’t directly incorporated into the
algorithm, which reduces its capability to infer lower-body pose. As described in Section 3.3, we
remove the component of l1(i) present in the measurements to set up a linear system that maps the
joint rotations rM to the measured locations lm. Thus, the algorithm can only use the prior to infer
translation, and thereby infer lower body movement.

One technique that we could explore in future work is to incorporate foot contact constraints to set up
another kinematic linear system to map joint rotations to root translation. The foot that is in contact
with the ground is temporarily stationary with respect to the global coordinate frame, assuming no
sliding takes place. As far as we know, inferring foot contact from just the 3 measured sensors at the
head and the wrists is a difficult problem. Furthermore, in our preliminary experiments, we found
that even when the foot contact is known, the kinematic system that we use for inverse guidance tends
to drive the output towards stiff and unnatural motion.
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Figure 11: More scaling qualitative results comparing InPose with the Diffusion-based Baselines
with varying body scale. InPose is able to infer lower body movement using the prior learnt from
hand motion during walking.

Figure 12: Some catastrophic failure cases of InPose. This occurs when the user gets extremely
close to the ground. Without root translation information,InPose catastrophically fails, as it is
unable to infer the user’s posture
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